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Abstract—Indole (1) can be converted to 2,3-dibromo-1-methylindole (3) in two operations (92% yield). Treatment of 3 with
tert-butyllithium effects clean monolithiation to 3-bromo-2-lithio-1-methylindole (4), which can be trapped with various
electrophiles to afford the 3-bromo-2-substituted indoles (5–8) in 85–99% yield. A second bromine–lithium exchange reaction and
quenching with electrophiles yields the 2,3-disubstituted indoles (9–10) in 88–95% yield. © 2002 Published by Elsevier Science Ltd.

Although polyhalogenated indoles are ubiquitous in
nature,1 only recently have these compounds been
employed in synthesis. For example, we have employed
2,3-diiodoindoles, which are readily synthesized from
indole,2 in bis-Suzuki reactions,3 to generate and trap
2,3-dilithio-1-methylindole,4 to effect (inadvertently) an
unusual indole ring fragmentation;5 and in a synthesis
of isatins.6 Others have recently used monohaloindoles

in synthesis.7 We recently described a highly efficient
preparation of 2,3-dibromo-1-methylindole (3) from
indole (1) en route to syntheses of the naturally occur-
ring 2,3,6-tribromo-1-methylindole and 2,3,5,6-tetra-
bromo-1-methylindole.8 This sequence makes use of the
excellent Katritzky indole C-2 lithiation protocol9 fol-
lowed by Bergman’s indole C-2 bromination method to
give 2-bromoindole (2).10 Subsequent bromination and
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methylation of 2 in one-pot affords 2,3-dibromo-1-
methylindole (3) in excellent overall yield (92% from
indole).

Whereas our earlier attempts to effect selective mono-
lithiation of 2,3-diiodoindoles and 2,3-bromoiodoin-
doles were unsuccessful,11 we now report that selective
monolithiation of 2,3-dibromo-1-methylindole (3) at
−78°C is a clean process, even with a large excess of
tert-butyllithium, to generate the relatively stable 3-
bromo-2-lithio-1-methylindole (4).12 Subsequent reac-
tion of 4 with various electrophiles affords the
corresponding 3-bromo-2-substituted indoles (5–8) in
85–99% yield as summarized in Scheme 1. Presumably,
the inductive electron withdrawing effect of the indole
nitrogen is responsible for the observed selective
bromine–lithium exchange at C-2. Also, the greater
electron density at C-3 may destabilize an anion at this
position. These new 3-bromoindoles (5–8) exhibited
satisfactory spectral and elemental analytical data,13

and a general procedure is given.14

In a one-pot operation we have also found that both
bromines of 3 can be sequentially replaced by elec-
trophiles. Thus, treatment of 3 with tert-butyllithium
followed by methyl iodide affords 7, which, without
isolation, is further treated with tert-butyllithium and
then DMF to afford 1,2-dimethyl-3-formylindole
(9)15,16 in 88% yield. A similar protocol with carbon
dioxide and ammonium chloride as the two elec-
trophiles gave 2-carboxy-1-methylindole (10)17,18 in 95%
yield. Both 9 and 10 are known compounds, and the
synthesis of 9 is representative of our procedure.19 For
the synthesis of 10 it is necessary to remove the excess
carbon dioxide in vacuo before adding the second
equivalent of tert-butyllithium.

In summary, we have shown that 2,3-dibromo-1-
methylindole (3) can be selectively converted to 3-
bromo-2-lithio-1-methylindole (4) by bromine-lithium
exchange with tert-butyllithium at −78°C. The resulting
species 4 can be trapped with electrophiles to give 5–8.
Furthermore, in one-pot sequential bromine–lithium
exchange reactions, 3 can be converted to 2,3-disubsti-
tuted indoles, e.g. 9, 10.
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